If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2-41x+40)=(x-9)
We move all terms to the left:
(4x^2-41x+40)-((x-9))=0
We get rid of parentheses
4x^2-41x-((x-9))+40=0
We calculate terms in parentheses: -((x-9)), so:We get rid of parentheses
(x-9)
We get rid of parentheses
x-9
Back to the equation:
-(x-9)
4x^2-41x-x+9+40=0
We add all the numbers together, and all the variables
4x^2-42x+49=0
a = 4; b = -42; c = +49;
Δ = b2-4ac
Δ = -422-4·4·49
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-14\sqrt{5}}{2*4}=\frac{42-14\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+14\sqrt{5}}{2*4}=\frac{42+14\sqrt{5}}{8} $
| 17x+-3x−16x+6x−3x=-8 | | 10x-25/2x-5=0 | | 3x+2x+5=120 | | 2(p-194.99)=284.97 | | G(7)=-6x+5 | | x+25=5x-7 | | 2(y-1)=-10 | | 10(x-2)^1.5=80 | | 0.79t+30=1.29 | | 0.25x=0.35x-3 | | 6x^2=4x+1 | | 6n^2+2n-15=0 | | 10-j/3=12 | | 6x^2=4x+6x1 | | 3|2x+4|-7=2 | | -9.8t^2+11=0 | | -5b2+3b+2=0 | | 13g+g-13g+g=16 | | 3n-9=1+2n | | 4K+-7k-4K=10 | | y-12=-6(y+1) | | ^3+2-2i=0 | | -9.8t^2=-11 | | 17p+-p-6p+-4p+-8p=18 | | x^2-8x=0+ | | -5x+2=7(x+2) | | 9-5b=3(3+7b) | | 3(x+1)=-(x-5) | | 8-(6x+5)=-3x-6 | | r^2+4r+4=2r | | 36x+48=180 | | 22=-9.8t^2 |